Комплексное автономное энергоснабжение новые варианты

Комплексное автономное энергоснабжение новые варианты

Тема для статьи появилась в результате анализа писем читателей. Вот характерный вопрос: – «Здравствуйте. Подскажите, как мне высчитать необходимое оборудование для автономного энергоснабжение дома от солнца и ветра при температуре зимой до – 50 градусов и где можно купить такое оборудование?».

И поскольку использование альтернативных источников энергии касается частного домостроения, мы и поведем разговор в этом направлении.

Следует отметить, что об автономных системах энергообеспечения вообще, и частных домов в частности, есть достаточно много информации. Как правило, это дизельные или бензиновые электрогенераторы различных мощностей. В последнее время появились системы автономного электроснабжения, включающие комплекс оборудования: – генератор, выпрямитель, аккумуляторы, инвертор и управляющий контроллер.

Указанное оборудование, кроме разовых затрат, требует весьма больших эксплуатационных расходов, прежде всего горючее и запасные части. Поэтому, мы поговорим об автономных системах энергоснабжения частных домов от возобновляемых источников. Ведь энергию ветра и солнца можно использовать абсолютно бесплатно.

Понятно, что в нашем государстве сформировалась определенная система энергообеспечения, которая монопольно влияет на потребителей, устанавливая свои правила игры. Большинство инвестиций, в том числе из государственного бюджета, вкладываются в развитие крупных энергетических компаний, и совершенно отсутствует какая-либо направленность средств, в сторону бытового сектора и частного домовладения.

Но, в государствах, где по настоящему беспокоятся о своих гражданах совсем не так. И за примером далеко ходить не надо. В Европейских странах, где активно взялись за внедрение солнечной и ветровой энергии, на законодательном уровне решены вопросы подключения небольших индивидуальных энергоисточников (солнечных батарей и ветрогенераторов в частных усадьбах) в общую электросеть.

Следовательно, у населения, проживающего в частных домах, где эти новации широко внедрены – уже не люди платят государству за электроэнергию, а наоборот. На территории домовладения, установленные ветряные мельницы и солнечные батареи, которые обеспечивают себя бытовой электроэнергией, а избыток продают государству. Другими словами, – крутить электросчетчик в другую сторону себе на пользу, причем, честно, без воровства.

Для того, чтобы перенести европейский опыт в наши условия, необходимо изменить систему (во многих смыслах этого выражения) энергетических взаимоотношений. А именно, перенести приоритет инвестирования и льгот к каждому индивидуальному пользователю, кто непосредственно является потребителем энергии (электричества, тепла, газа).

В практике, мы часто пользуемся индивидуальными обогревателями, особенно в зимнюю пору, и подключаем их от розетки. А что, если вводить аналогичный подход отопления жилья – только уже без розетки. Выполнить автономную систему, которая включает в себя: небольшой ветроагрегат или солнечный коллектор, аккумулятор и непосредственно батарею (одну или две) отопление (бак нагрева воды).

При этом, вся эта система будет не только автономна от других традиционных энергоносителей, а вообще не зависеть от параметров электросети и др. Замечу, что данной схеме совершенно безразлично, какой ток и какое напряжение будет использовать для нагрева воды, отопления. Это простые и надежные конструкции, которые можно собрать буквально на «колене».

Практики давно пользуются простыми расчетами, в которых для обогрева 10 кв.м площади необходимо 1 кВт мощности. При хорошем утеплении помещения затрачиваемую мощность можно существенно уменьшить.

В настоящее время на рынке Украины можно приобрести вполне приличные ветряки, мощностью 2 – 5 кВт, стоимостью, 750-900 евро за киловатт. Они устанавливаться на 7-10 метровой высоте (то есть над крышами частных домов) и могут отапливать 30-50 кв. м. жилой площади.

Другой вариант автономного энергоснабжения дома – солнечные батареи. Из расчета их нынешних мощностей в наших широтах – нужно 15 кв. м для выработки 1 кВт энергии (при КПД солнечных элементов 10%-15%). То есть накрыли такими элементами 45 кв. м (скажем, солнечную сторону крыши дома) и уже имеете 3 кВт энергии, которая автономно нагревает систему отопления жилой площадью 30 кв. м. Параллельно, к такой автономной системе может быть подсоединено, освещение с энергосберегающими лампами.

В народе бытует хорошая пословица: «Старый дом не разрушают – пока новый не построят!» Это же касается и отопительных систем в доме. Сейчас много людей по селам оставили в избах печи с дровяным отоплением, параллельно проведя газ и водяное отопление. Теперь из-за сильных морозов топят не только газовыми котлами, но и дровами.

Важным фактором, непосредственно связанным с затратами энергии на отопление, является утепление дома. И если этот фактор не задействован, то во времена холодов и сильных морозов не достаточно тепла от одного газового (электрического) котла отопления. Чтобы жить в тепле мы вынуждены включать дополнительно еще отдельный электронагреватель.

В такие периоды большим подспорьем обогрева может быть оговоренная автономная отопительная система, при существующем отоплении. Следовательно, попользовавшись, сезон-другой и комбинируя состав оборудования, можно будет прийти к выводу, что из всего этого эффективнее и выгоднее, а, следовательно, и нужнее в каждом доме.

Опыт других стран и элементарная логика подсказывает, что будущее за компактными индивидуальными солнечными и ветровыми автономными энергоустановками. Их и устанавливать будет проще, и рынок они скорее будут осваивать, чем громоздкие энергосистемы.

Наибольшей проблемой систем, питающихся солнечной и ветровой энергией, представляется их способность сохранять накопленную энергию. Необходимы компактные аккумуляторы, которые бы обеспечивали сохранение энергии в течение длительного периода. На время безветренной погоды (если источником является ветрогенератор) или сохранение накопленной за дневной период солнечной энергии для использования ее ночью.

Развитие процесса разработки и внедрения емкостных аккумуляторов напрямую связано с автомобилестроением. Этот сектор экономики как всегда востребован. Уже сейчас в Европе на известных автозаводах Германии и Франции начат серийный выпуск электромобилей. Пока сравнительно компактные аккумуляторы уже известных моделей обеспечивают автономный пробег своему автокару от 130 до 200 километров без подзарядки.

И уже очевидно, что заказчики и разработчики новейшего электротранспорта не успокоятся, по крайней мере, до тех пор, пока не превзойдут по этому показателю автомобили с двигателями внутреннего сгорания — то есть 500-600 км.

Отметим, что в настоящее время идет интенсивный процесс внедрения новых, прогрессивных технологий в изготовление аккумуляторов, чтобы сделать их компактнее и с большей электрической емкостью. В качестве примера может служить разработанная модель кроссовера-внедорожника Tesla Motors, в которой емкость литийно-ионных аккумуляторов обеспечивает от 240 до 440 км автономного пробега двигателей 40, 60 и 85 кВт мощности.

Одним словом за аккумуляторами дело не станет. Однако нас интересует вопрос относительно стоимости автономной отопительной системы, о которой мы говорим. Сейчас сложно сказать, основываясь только на отечественных экспериментальных разработках и довольно высоких ценах на солнечные батареи, ветряные генераторы и аккумуляторы.

Однако, по мере увеличения этого оборудования на рынке и перехода его к серийному производству цены на него будут значительно ниже.

Стоимость подобной автономной отопительной системы может измеряться как тысячами долларов, так и тысячами гривен.

Для наглядности возьмем стоимость системы отопления небольшого частного дома 30-40 кв. м от газового котла. По тарифу (до 2500 куб. м в год) такая система отопления обходится минимум 2 тысячи грн. в год. Строение до 100 кв. м по тарифу (до 6000 куб. м в год), от 3 тысяч грн.

Подведение газа к дому, если газопровод проходи рядом, может обойтись в 25 тысяч грн. Словом, есть с чем сравнивать и на чем экономить, вводя использование ветровой и солнечной энергии для автономного энергоснабжения дома для отопления жилья.

Мы так же очень надеемся, что в ближайшее время государство используя существующее законодательство, начнет влиять на ценовую политику путем дотаций и налоговых преференций предприятиям, которые будут заниматься производством систем нетрадиционной и возобновляемой энергетики.

И здесь, уместно и логично, ввести возмещение по "зеленому тарифу" физическим лицам, которые установят такие системы в своей домах.

Я высказал свое мнение по данному направлению. Уверен, есть и другие суждения по оговоренным вопросам. Если у вас есть предложения и замечания и желание высказать свою точку зрения, пожалуйста.

Читайте также:  Гороховое пюре в мультиварке redmond

Устройство независимой электросистемы позволит обеспечить энергией частные постройки, не подключенные к централизованным сетям. Результат поможет сократить энергетические расходы дач и домов. Но для того чтобы воспользоваться перечисленными плюсами, надо точно знать, как сделать автономное электроснабжение частного дома. Ведь правда?

Мы расскажем об устройстве независимых систем энергоснабжения. У нас вы найдете основополагающие принципы устройства и важные нюансы организации подачи электричества в частные жилые объекты. Представленная нами информация тщательно проверена, систематизирована, сведения соответствуют строительным нормативам.

В предложенной нами статье досконально разобраны варианты устройства частных энергетических систем, приведены и оценены все возможные источники получения энергии. Подробно изложены принципы сооружения и действия автономного электроснабжения, представленные данные подкреплены фото и видео.

Общие требования к домашним автономным системам

Чтобы автономный комплекс корректно работал и производил объем энергии, полностью покрывающий потребности всех домашних устройств и предметов бытовой техники, перед монтажом оборудования проводят предварительный расчет общей мощности имеющихся в наличии электропотребителей.

К их числу относятся такие агрегаты, как:

  • отопительная система жилого дома;
  • холодильная техника;
  • устройства по очистке/охлаждению воздуха;
  • крупно- и мелкогабаритные бытовые приборы;
  • насосный комплекс, осуществляющий поставку в дом воды из колодца или скважины;
  • электрический инструмент для текущего ремонта, осуществляемого своими руками, и ухода за строениями и приусадебным участком.

Базовую мощность узнают из сопроводительных документов, выданных производителем и прилагающихся к каждому агрегату. Этот показатель у всех разный, но любые приборы и устройства одинаково требуют стабильной подачи энергии с определенной частотой электропотока и без перепадов напряжения.

В некоторых случаях учитывают еще и такой параметр, как синусоидальность формы переменного напряжения.

Данные о мощности приборов суммируют и таким способом выясняют, сколько реальных киловатт часов должна бесперебойно вырабатывать в день автономная электросистема. Рекомендуется превышать полученное число на 15-30%, чтобы в будущем иметь солидный запас на увеличение потребления энергии.

На следующем этапе определяют основные технические характеристики будущей энергосистемы. Эти параметры напрямую зависят от ее назначения.

Собираясь сделать резервный источник, подключающийся только в определенный момент, когда недоступно получение электричества через централизованные коммуникации, устанавливают предполагаемое время работы автономного оборудования, и на основании этих данных вычисляют нужную для нормального функционирования системы мощность.

Если же на «плечи» автономного оборудования планируют возложить все электрообеспечение в жилом помещении, хозяйственных постройках и на самом приусадебном участке, заранее четко высчитывают примерное дневное потребление.

На эту цифру накидывают еще 20-25% и таким способом получают фактическую базовую мощность, необходимую для полноценной работы коммуникационных сетей, оборудования и бытовой техники.

Имея на руках подробную техническую информацию, приступают к разработке проекта и выводят смету с полным объективным обсчетом предстоящих финансовых затрат на покупку агрегатов и оплату услуг по установке.

Специалисты, разумеется, справятся с монтажом быстрее и качественней, однако попросят за это солидную сумму. Домашние мастера тоже могут осилить основные части задачи, но для осуществления отдельных этапов все же разумнее будет пригласить профессионалов или хотя бы воспользоваться их советами.

Взвешенная оценка независимой системы

Современные системы для автономного электроснабжения используют самые разные ресурсы для выработки энергии. Это позволяет получать качественное электричество без перепадов даже в самых отдаленных и малонаселенных местах, куда еще не успели добраться все блага цивилизации.

Достоинства автономной электрики

Основное достоинство систем автономного электроснабжения – отсутствие норм потребления и платы за использованную энергию. Это позволяет обеспечить в жилом доме любой уровень комфорта, независимо от того, проходят ли рядом центральные коммуникации или нет.

Если предварительные расчеты мощности произведены верно и не занижены, система будет работать как часы и хозяева не столкнутся с такими проблемами, как неожиданное отключение электричества и перепады напряжения.

Сведется к нулю риск того, что бытовая техника, имеющаяся в жилом помещении, выйдет из строя или сгорит из-за неожиданного скачка мощности. Количество и качество получаемой электроэнергии всегда будет одинаковым и именно таким, как было запланировано изначально в проекте.

Оборудование, обеспечивающее независимые поставки электроэнергии, имеет высокий уровень надежности и крайне редко выходит из строя. Это преимущество сохраняет актуальность при соблюдении базовых правил эксплуатации и регулярном обслуживании отдельных элементов и всей системы целиком.

Кроме того, уже сегодня работают экспериментальные программы, позволяющие владельцам продавать излишки электроэнергии государству. Однако об использовании этой интересной возможности стоит подумать заблаговременно, еще на стадии разработки проекта системы электрообеспечения.

Дополнительно потребуется оформить пакет разрешительных документов, подтверждающих способность имеющихся в наличии приборов вырабатывать нужный объем энергии надлежащего качества.

Недостатки независимого электроснабжения

К минусам независимой системы электроснабжения относят довольно высокую стоимость оборудования и значительные расходы на эксплуатацию.

Электрики настоятельно рекомендуют хозяевам очень внимательно производить все расчеты и четко выяснять технические параметры запланированной к монтажу системы. Иначе может возникнуть ситуация, когда агрегат, производящий электроэнергию, выйдет из строя, так и не успев окупиться.

Ремонт автономного комплекса владельцы тоже осуществляют за свой счет, а эти услуги стоят значительных денег. Если же дом находится в отдаленном или труднодоступном районе, за мастерами придется поехать лично или дополнительно оплачивать выезд бригады на место.

Причем делать все понадобится достаточно быстро, так как домашние коммуникации и удобства, работающие на электроэнергии, в это время будут недоступны.

Значительно снизят шанс поломки автономных устройств регулярный профилактический осмотр и плановое техническое обслуживание действующих агрегатов, но и для этого может понадобиться визит специалистов, стоящий денег.

Конечно, часть таких работ хозяин сделает самостоятельно, но более серьезные моменты, требующие определенного опыта и специфических знаний, все равно повлекут за собой профессиональное вмешательство.

Определение наилучшего источника энергии

Выбор альтернативного источника энергии для автономного электрообеспечения жилого дома – очень важный и ответственный момент, требующий серьезного подхода.

К самым популярным и наиболее распространенным вариантам относятся:

  • генераторы, работающие на дизельном топливе или бензине;
  • солнечные батареи и коллекторы;
  • аккумуляторы большого объема и мощности;
  • гидроэлектросистемы;
  • преобразователи ветряной энергии.

Каждый источник имеет собственные уникальные характеристики и особенности. Владельцам следует заранее с ними ознакомиться и на основании этой информации определить оптимальный вариант системы, способной удовлетворить все электрические нужды частного жилого дома.

Особенности работы генераторов

Генератор – это самый быстрый и простой способ обеспечить частный дом электричеством. Для работы агрегат использует бензин или дизельное топливо и в результате его сжигания выдает необходимое количество энергии.

Главным преимуществом является полная независимость устройства от сезонных изменений и погодных колебаний. К недостаткам относится обязательное наличие на участке специально оборудованного хранилища для топлива, рассчитанного на объем от 200 литров.

Чаще всего бензиновые и дизельные генераторные установки используют в качестве резервных или временных источников получения электроэнергии. Это обусловлено тем, что для полноценной работы приборы требуют значительных объемов горючего, стоимость которого постоянно увеличивается.

Само оборудование тоже имеет высокую цену и нуждается в профилактическом обслуживании. К более выгодным вариантам генераторных установок относят газовые агрегаты. Они не нуждаются в бесперебойных поставках горючего и не требуют наличия хранилища для топливных материалов.

Однако полноценную работу этих приборов обеспечивает такой пункт, как обязательное подключение к центральной газовой сети, что далеко не всегда является возможным и доступным.

Именно из-за этих сложностей генераторы редко выбирают в качестве основного источника для поставки электричества в частный дом.

Автономные солнечные электростанции

Для снабжения частного жилого дома применяют коллекторы или солнечные батареи. Эти устройства поглощают световую энергию и преобразовывают ее в ток, который потом питает системы, устройства и приборы, работающие на электричестве.

Солнечные батареи (панели) представляют собой набор соединенных вместе и заключенных в раму полупроводниковых элементов, перерабатывающих ресурсы света в электрическую энергию. Оборудование не потребляет топлива и не нуждается в сложном высокопрофессиональном обслуживании.

Для содержания объекта в порядке достаточно просто время от времени протирать поглощающее зеркало от пыли и убирать с него мелкий мусор. Установка агрегата на некотором возвышении под углом около 70 градусов создаст условия, при которых в зимний период времени снег не сможет скапливаться на поверхности батарее и препятствовать ее корректной работе.

Читайте также:  Грибы выросли в подвале

Регулировка гелиосистемы происходит автоматически. Владельцу не требуется включать или выключать оборудование. Выработанная энергия скапливается в специальных аккумуляторных комплексах и позволяет использовать электричество круглосуточно в индивидуальном, удобно лично для хозяина режиме.

Солнечные батареи высокого качества очень надежны и рассчитаны на полноценную эксплуатацию в течение как минимум 25 лет. К концу этого периода их работоспособность немного снижается и следующие 20 лет панели выдают ресурс в объеме около 80% от базовой изначальной мощности, заявленной производителем.

Таким образом, общий срок службы батарей составляет 45 лет, что значительно превышает показатели прочих автономных систем.

Так как солнечный свет имеется практически везде, гелиопанели почти не имеют ограничений по установке. Размещать их можно на любом незатененном пространстве участка, обращая принимающую поверхность под определенным углом на южную сторону.

Если размеры приусадебной территории не позволяют выделить для оборудования отдельное свободное место, уместно использовать для монтажа системы поверхность крыши жилого дома или кровлю хозяйственных построек.

Ветряные и гидроэлектрические системы имеют фиксированный уровень мощности. У гелиосистем эта величина плавающая и зависит только от количества установленных батарей. Солнечные панели можно использовать в качестве дополнительных энергетических источников. В этом случае понадобится гибридный инвертор, с которым ознакомит рекомендуемая нами статья.

Если в большом количестве энергии на данный момент нет потребности, можно поставить агрегат миниатюрных габаритов, а в случае надобности в удобное время нарастить дополнительные панели и увеличить объем получаемого ресурса.

Энергия ветра для автономного электроснабжения

В том случае, когда метеорологические или какие-либо другие объективные причины не позволяют установить солнечные батареи или коллекторы, есть смысл обратить внимание на сборку и установку ветрогенератора. Он представляет собой турбину, размещенную на высоких (от 3 метров) башнях.

Она улавливает кинетическую энергию вихревого потока, преобразует ее в механическую энергию вращением ротора и потом превращает в электроресурс посредством специальных инверторов.

Статистику могут предоставить метеослужба и различные интернет-сервисы, позволяющие наблюдать за погодой в онлайн-режиме. Если ветра в регионе считаются редким явлением и не имеют нужной силы, монтировать «ветряк» будет нецелесообразно.

Агрегат отличается надежностью, ветрогенератор создает вредных выбросов в атмосферу и не оставляет отходов производства, но для полноценной работы остро нуждается в постоянном ветре, дующем со скоростью не менее 14 километров в час. Это очень важное условие, и если его не соблюсти, прибор просто не справится с поставленными задачами.

Локальные системы гидроэнергии

Использование гидротурбины для обеспечения жилого дома электричеством – вполне реальный и выгодный вариант, но лишь в том случае, когда вблизи строений располагаются речка или озеро. Небольшая система, работающая на энергии воды, абсолютно безопасна как в экологическом, так и в социальном плане, очень проста в эксплуатации и имеет хороший КПД.

Полный ресурс работы миниатюрной гидроэлектростанции превышает 40 лет. Для корректного функционирования система не нуждается в крупных водохранилищах и не требует затопления больших территорий. Перед установкой необходимо составить проект монтажа и получить соответствующие разрешительные документы.

Аккумуляторы для автономных систем

Принцип работы аккумулятора понятен и несложен. Пока в центральной сети имеется электричество, батареи заряжаются от розетки и накапливают в своих блоках ресурс. Аккумуляторы для солнечных батарей функционируют аналогичным образом.

Когда поставки энергии прекращаются, модули через специальную инверторную установку отдают электрику бытовым приборам и различным домашним системам.

Для постоянного обеспечения жилого помещения электричеством они не подходят, зато с ролью резервного комплекса справятся на отлично.

С лучшими разработками для организации альтернативной энергетики загородного дома ознакомит следующая статья, полностью посвященная этому интересному вопросу.

Выводы и полезное видео по теме

Ролик №1 наглядно продемонстрирует, как собрать своими руками автономную систему электроснабжения частного дома из солнечных батарей. В видео даны полезные советы от мастера с подробным показом каждого действия и описанием используемого оборудования:

Ролик №2 знакомит с тем, что следует выбрать для создания в доме резервной электрической системы: генератор или аккумулятор. Обзор агрегатов, плюсы и минусы, сравнительные характеристики и принцип работы поможет самостоятельным мастерам в осуществлении идеи:

Ролик №3 представляет, как работает ветрогенератор, способен ли он покрыть все потребности среднестатистического жилого дома в электроэнергии:

Роликом №4 представлен независимый комплекс электроснабжения для загородного дома с использованием различных ресурсов и установок. Обозначены достоинства и недостатки системы из солнечных панелей, инвертора МАП и прогрессивного ветрогенератора:

Потребность в организации автономного электричества для частного дома может возникнуть по разным причинам, например, из-за проблематичности подключения к уже существующей сети или ввиду отсутствия центральных коммуникаций в районе расположения жилья.

Нестабильно подающееся напряжение, перебои питания или регулярные отключения тоже могут вынудить владельцев недвижимости задуматься о получении энергии из альтернативных источников. Правильно рассчитанная и корректно смонтированная система позволит забыть о всех проблемах с электрикой.

Расскажите о том, как сооружали автономную систему энергообеспечения на загородном участке. Не исключено, что в вашем арсенале есть способы, не приведенные в статье, и сведения, полезные для посетителей сайта. Пишите, пожалуйста, комментарии в расположенном ниже блоке, делитесь впечатлениями, размещайте фото, задавайте вопросы.

Дата публикации: 8 октября 2015

О проблеме автономного энергообеспечения малых объектов

Проблема автономного энергообеспечения малых объектов – а это индивидуальное жилье, мелкие сельскохозяйственные производства, промыслы, отдаленные оздоровительные учреждения или объекты экологического назначения и туризма и т. д. – становится всё более актуальной. Она имеет прямое отношение и к выживанию ещё сохранившихся сельских поселений, и к освоению новых территорий, к вопросу занятости населения и, конечно же, к сохранению окружающей среды. Да и экономика энергоснабжения объектов даже в зоне доступности к инженерным сетям с каждым годом всё настойчивее принуждает к поиску альтернативных путей. Подтверждением тому является возрастающий интерес к решению этой задачи как со стороны специалистов в данной области, так и просто энтузиастов в практическом освоении альтернативной энергетики.

Однако, как показывает опыт использования самых разнообразных технических устройств, как собственного изготовления, так и промышленного – отечественного либо зарубежного (в основном – китайского), на сегодняшнем этапе нет удовлетворительных примеров автономного комплексного энергоснабжения даже малых объектов. В лучшем случае встречаются удачные решения по бесперебойному электроснабжению потребителей и то только при небольших нагрузках. А уж о стабильном автономном теплоснабжении от возобновляемых источников энергии (ВИЭ) без тепловых её накопителей говорить не приходится.

Анализ всевозможных вариантов решения рассматриваемой проблемы убеждает, что автономное энергоснабжение от ВИЭ должно быть комплексным. Это – не только полная независимость от поставщиков энергии с их ценовым и правовым произволом, от аварийных и плановых, а также «веерных» отключений, но и оптимальное решение в смысле минимизации капитальных и эксплуатационных затрат, а также предельно высокая эффективность использования природных энергоресурсов. И если первые из упомянутых аргументов не нуждаются в пояснениях, то последние рассмотрим поподробнее.

За основную модель энерго-инфраструктурного комплекса для малых объектов примем «Пример комплексного энергоснабжения объектов от ВИЭ», являющийся приложением к статье «К разумной энергетике». Главным отличительным признаком этого варианта является наличие в нём теплового аккумулятора – накопителя тепловой энергии.

Разработано очень много конструкций тепловых аккумуляторов, отличающихся и по исполнению, и по виду используемого материала, и по энергоёмкости – вплоть до сезонного теплоснабжения крупных объектов. Они просты по своему устройству, состоят из недорогих и доступных материалов и практически не требуют никакого обслуживания. Для создания в них теплового резерва разработаны различные преобразователи солнечной, ветровой, волновой – то есть возобновляемой энергии. О них поговорим позже.

Вопрос теплоснабжения жилья, разных подсобных и хозяйственных объектов, теплиц и т. д. здесь решается просто. Более серьёзного внимания требует решение вопроса преобразования тепла в электрическую энергию: известные паросиловые агрегаты из-за своей сложности, небезопасности и низкой эффективности здесь заведомо не годятся, а уж о термопарах и говорить нечего.

Читайте также:  Вторичное вино из мезги винограда рецепт

В упомянутом «Примере» приводится тепломеханический преобразователь по патенту RU №2442906, 2012 г. Он прост в изготовлении, безопасен в эксплуатации, легко вписывается в схему автоматического управления. Но при использовании для его теплочувствительных элементов (ТЧЭ) обычных дюралевых труб реальный КПД будет ниже «паровозного». Конечно, при утилизации сбрасываемого им тепла на отопительные цели (по ниже приведенной блок-схеме) общий к.п.д. системы энергоснабжения остаётся очень высоким, однако соотношение затрат тепла – на обогрев и электроснабжение – может оказаться невыгодным.

Сейчас уже созданы новые материалы, позволяющие изготовить теплочувствительные элементы с улучшенными механическими свойствами и таким образом повысить в разы к.п.д. преобразователя, но эти материалы пока отсутствуют в широком доступе.

С учетом этих обстоятельств был разработан более совершенный компактный тепломеханический преобразователь с более высоким (по крайней мере – на порядок) КПД., чем у выше рассмотренного. При этом он также безопасен и практически не требует никакого обслуживания. Но для освоения его производства должны быть соответствующие производственные условия, а также выполнение определенных формальностей, связанных с патентованием этой модели.

Однако вернёмся к первичным преобразователям возобновляемой энергии. В описаниях упомянутых в «Примере» ветротепловых установок (ВТУ) указаны их главные достоинства: безопасность при всякой погоде и на всей прилегающей территории (т. е. отсутствие «опасной зоны»), способность надежно работать в широком диапазоне ветровых нагрузок, оптимальная динамика работы за счет строгой согласованности силовых характеристик ветроколеса и теплогенератора, защита от запредельных режимов, а также вполне приемлемые капитальные затраты, сопоставимые со стоимостью системы отопления подобных объектов с подключением к газовой сети. Одна – наиболее простая по конструкции – установка схематично показана на рис. 1. У неё такой же ветряк, как у ВТУ по патенту РФ №2253041, а теплогенератор конструкционно совмещен с теплоаккумулятором.

Но более перспективной представляется «Парусная импульсная ветроустановка» (патент РФ №2469209), опять же в варианте с тепловым преобразованием энергии: она вообще не имеет вращающихся органов, сохраняет свою работоспособность даже в экстремальных ветровых условиях, обладает свойством самооптимизации режима работы во всем диапазоне ветровых нагрузок и, таким образом, может быть использована на территории с самой плотной застройкой.

Что касается солнечных коллекторов, то хотелось бы остановиться на самых простых вариантах их конструкции, один из них показан на рис. 2.

Разработан и «Солнечный самонаводящийся коллектор-нагнетатель» — патент РФ № 2535193, не требующий электроэнергии для циркуляции теплоносителя и ориентации абсорбера на источник излучения, а также солнечные коллекторы с защитой от атмосферных осадков (в т.ч. града, снега и гололёда, доставляющих много хлопот при их эксплуатации).

Для автономного энергоснабжения малых объектов на побережьях создан «Импульсный преобразователь волновой энергии» — патент РФ № 2374485.

В заключение следует привести пару примеров комплексного энергоснабжения с краткими пояснениями их практического исполнения.

При выборе вариантов за основу были приняты следующие соображения:

  • требование бесперебойности энергообеспечения объектов даже в самые холодные зимы;
  • целесообразность начать освоение этого нового направления (т. е. с использованием энергоёмких теплоаккумуляторов) с самых простейших конструкций;
  • необходимость обеспечения полной безопасности ветроустановок, позволяющей использовать их на ограниченных земельных участках, где исключена возможность отчуждения территории под «опасную зону», а также максимальное снижение уровня причиняемого дискомфорта;
  • сведéние к минимуму капитальных затрат и эксплуатационных издержек.

В соответствии с этим были выбраны по одному варианту для каждого вида ВИЭ, которые, кстати, в ниже описанном исполнении ещё не апробированы. При этом в качестве теплоносителя используется воздух, что позволяет максимально упростить всю систему теплоснабжения и обеспечить её надежность при любой погоде.

1. Вариант с ветротепловой установкой

Первичным преобразователем ветровой энергии в этом варианте принята упрощенная установка, предназначенная для совместной работы с простейшим галечным аккумулятором (такой вариант упоминается в «Примере комплексного энергоснабжения объектов от ВИЭ»). Используется принцип аэродинамического нагрева (как в аэродинамической сушильной камере, только вместо просушиваемого материала здесь воздухопроницаемый экологически чистый накопитель тепла – промытый гравий, мелкий булыжник и т.п.). Мощный осевой вентилятор с меняющимся углом поворота лопастей создает возможность автоматического регулирования нагрузки на ветроколесо, чем обеспечивается его вращение практически с постоянной скоростью при любом напоре ветра в расчетном интервале. Предусмотрена защита от запредельных режимов, от опасной вибрации (в этом случае автоматическое повторное включение исключено), а при наличии потенциальной опасности – и от шквальных ударов ветра. Конструкция лопастей и их креплений исключает возможность разрушения ветроколеса с потерей его фрагментов. Таким образом, «опасной зоны» не существует.

Над теплоаккумулятором, занимающем определённую площадь, целесообразно разместить теплицу (оранжерею) или какую-либо хозяйственную постройку: кухню, баню либо сушилку. Здесь же можно расположить и предусмотренную в «Примере» микроТЭЦ. Отопление помещений обеспечивается потоком тёплого воздуха от контура охлаждения теплочувствительных элементов тепломеханического преобразователя (ТМП). При повышенной потребности тепла можно замкнуть этот контур и даже добавить тепло прямо от теплоаккумулятора. Поток теплого воздуха пропускается под полом, а выход его предусмотрен по внутреннему периметру наружных стен – за плинтусом через специально оставленную щель в 2 – 3 мм. В результате имеем очень тёплые полы и никаких труб и батарей!

Постоянство частоты вращения вала ТМП (а, следовательно, и электрогенератора) обеспечивается автоматическим регулированием подачи теплоносителя в контур нагрева ТЧЭ.

Вариант ВТУ описанной системы показан на рис.1 выше.

2. Вариант с солнечным нагревателем

Простейшим техническим решением системы с использованием солнечной энергии мог бы стать вариант с размещением предельно упрощенного солнечного коллектора на одном либо двух соседних скатах кровли. При строительстве новых помещений такие, но конструктивно усиленные коллекторы, целесообразно использовать как элементы конструкции крыши, установив их под оптимальным углом наклона (для географической широты средней полосы России — с учетом солнечного склонения в зимнее время – около 30 град. к вертикали).

В качестве теплоаккумулятора следует принять такой же галечный накопитель, однако предпочтительной конструкцией его была бы известная разновидность «теплоаккумулятор СТЕНА», которая примыкает к «глухой» стенке помещения.

Стационарный теплоаккумулятор СТЭ типа «Стена»

В варианте представленного комплекса имеется, однако, один существенный недостаток. При всем удобстве использования «твердых» накопителей тепла теплоемкость материала в 3 – 4 раза ниже, чем у воды. Если при аэродинамическом нагреве его общую теплоёмкость можно увеличить за счёт повышенной температуры нагрева, то в рассматриваемом солнечном варианте такая возможность ограничена, а, следовательно, потребуется увеличение объема и габаритов теплоаккумулятора, при этом не будет оптимальной и температура отбираемого воздуха для работы ТМП и некоторых других целей. Выход представляется в замене обычного коллектора на такой же простейший солнечный нагреватель, но с большей концентрацией лучей и с защитой от атмосферных осадков, (он сейчас проходит экспертизу в Роспатенте). С помощью такого нагревателя можно поднять температуру в аккумуляторе выше 200 o С, обеспечив запас тепла, соизмеримый с энергоёмкостью жидкостного теплоаккумулятора такого же объёма.

Пример простейшей конструкции «встроенного» плоского солнечного коллектора представлен на рис. 2. Для повышения интенсивности облучения абсорбера в зимнее время здесь предусмотрен дополнительный козырек с отражающими нижней и боковыми поверхностями. В холодные сезоны он практически удвоит эффективность коллектора, а с повышением солнца над горизонтом в летнее время этот дополнительный эффект снижается до минимума.

Отражатели – металлические листы с зеркальной поверхностью. Абсорбером служит также лёгкий листовой прокат, освещаемая сторона которого имеет селективное покрытие. Защитное покрытие коллектора – структурные листы поликарбоната, трубопроводов – известные тонкопленочные теплоизоляционные покрытия. Каркас с нижним и верхним каналами для протока теплоносителя сварен из труб, например, прямоугольного сечения.

Остается напомнить, что описания патентов можно найти в открытых реестрах ФИПС.

Ссылка на основную публикацию
Комнатные вьюны каталог с фотографиями и названиями
В обустройстве жилых помещений все чаще можно встретить композиции из живых вьющихся растений, и это вполне оправдывается как их декоративными...
Когда сажать чеснок в октябре 2018 года
Приветствую друзья. Наступила осень, и казалось бы, что все дела с огородами и дачами пора заканчивать. Урожай собран, заготовки сделаны,...
Когда сажать фацелию осенью
Сидераты (вспомогательные культуры) улучшают состав почвы. Фацелия как сидерат очень востребована. Она принадлежит к семейству водолистниковые и часто применяется в...
Комнатные пионы в горшке
Пион покоряет красотой с первого взгляда. Ароматный король горделиво возвышается на садовых клумбах, заставляя восхищаться собою. Каждая любительница цветов хотела...
Adblock detector